Agilent 4284A Precision LCR Meter

Manual Change

Agilent Part No. 04284-90021

September 2002

Printed in Japan

Change 1

Change "|Z|, |Y|, L, C, R, X, G, and B Accuracy" on page 9-8 as follows:

|Z|, |Y|, L, C, R, X, G, and B Accuracy

|Z|, |Y|, L, C, R, X, G, and B accuracy Ae is given as $Ae = \pm [A + (Ka + Kaa + Kb \times Kbb + Kc) \times 100 + Kd] \times Ke$ [%]

A: Basic Accuracy (Refer to Figure 9-4 and 9-5.)

Ka: Impedance Proportional Factor (Refer to Table 9-1.)

Kaa: Cable Length Factor (Refer to Table 9-2.)

Kb: Impedance Proportional Factor (Refer to Table 9-1.)

Kbb: Cable Length Factor (Refer to Table 9-3.)

Kc: Calibration Interpolation Factor (Refer to Table 9-4.)

Kd: Cable Length Factor (Refer to Table 9-6.)
Ke: Temperature Factor (Refer to Figure 9-6.)

L, C, X, and B accuracy applies when Dx (measured D value) \leq 0.1.

R and G accuracy applies when Qx (measured Q value) ≤ 0.1 .

When Dx > 0.1, multiply Ae by $\sqrt{(1+Dx^2)}$ for L, C, X, and B accuracy.

When Qx > 0.1, multiply Ae by $\sqrt{1 + Qx^2}$ for R and G accuracy.

When measured value < 10 m Ω , |Z|, R, and X accuracy Ae is given as

$$Ae = \pm [(Ka + Kaa + Kc) \times 100 + Kd] \times Ke$$
 [%]

Ka: Impedance Proportional Factor (Refer to Table 9-1.)

Kaa: Cable Length Factor (Refer to Table 9-2.)

Kc: Calibration Interpolation Factor (Refer to Table 9-4.)

Kd: Cable Length Factor (Refer to Table 9-6.)Ke: Temperature Factor (Refer to Figure 9-6.)

X accuracy applies when Dx (measured D value) ≤ 0.1 .

R accuracy applies when Qx (measured Q value) ≤ 0.1 .

When Dx > 0.1, multiply Ae by $\sqrt{(1+Dx^2)}$ for X accuracy.

When Qx > 0.1, multiply Ae by $\sqrt{1 + Qx^2}$ for R accuracy.

Change 2

Add the following description to "4284A Calibration Accuracy" on page 9-16.

When measured value < 10 m Ω , calibration accuracy Acal is given as follows:

```
20 \text{ Hz} \le fm \le 1 \text{ kHz}: \qquad 0.03 \text{ [\%] *} 1 \text{ kHz} < fm \le 100 \text{ kHz}: \qquad 0.05 \text{ [\%] *} 100 \text{ kHz} < fm \le 1 \text{ MHz}: \qquad 0.05 + 5 \times fm \times 10^{-5} \text{ [\%] *} fm: \text{test frequency [kHz]} * Acal = 0.1% when Hi-PW mode is ON
```

Change 3

Change "Other Options" on page 9-20 as follows:

Other Options	4284A-002	Bias Current Interface	
		Allows the 4284A to control the 42841A Bias Current	
		Source.	
	4284A-004	Memory Card	
	4284A-006	2 m/4 m Cable Length Operation	
	4284A-008	Add Operation Manual (Japanese)	
	4284A-009	Delete Operation Manual	
	4284A-201	Handler Interface	
	4284A-202	Handler Interface	
	4284A-301	Scanner Interface	
	4284A-907	Front Handle Kit	
	4284A-908	Rack Mount Kit	
	4284A-909	Rack Flange and Handle Kit	
	4284A-910	Extra Operation Manual	

Change 4

Add 42030A (1 Ω) to Recommended Model column for Standard Resister in Table 10-1 (page 10-3).

Change 5

Add the following steps to the impedance measurement accuracy test (between step 29 and 30, page 10-17).

- a. Set the measurement function to R-X.
- b. Connect the 1 Ω standard resistor to the 1 m Test Leads (16048A).
- c. Perform Step d through e for all the test listed in Table 10-9-a.
- d. Press the TRIGGER key.
- e. Confirm the 4284A's reading is within the test limits in Table 10-9-a.

Table 10-9-a. Impedance Measurement Accuracy Test Limits for 1 m Cable Length Operation

	Test Limits (R)		
Signal Level	Test Frequency	Measurement Range	1Ω Standard
510 mV	1 kHz	10 Ω	C.V. $\pm 0.0026 \Omega$
5.1 V*	1 kHz	1 Ω	$\text{C.V.} \pm 0.0030 \ \Omega$

C.V.: Standard's calibration value at DC

^{*} Option 001 only